April 26, 2016

FILTRATION

FILTRATION:
Filtration does not kill microbes, it separates them out. Membrane filters with pore sizes between 0.2-0.45 μm are commonly used to remove particles from solutions that can't be autoclaved. It is used to remove microbes from heat labile liquids such as serum, antibiotic solutions, sugar solutions, urea solution. Various applications of filtration include removing bacteria from ingredients of culture media, preparing suspensions of viruses and phages free of bacteria, measuring sizes of viruses, separating toxins from culture filtrates, counting bacteria, clarifying fluids and purifying hydatid fluid. Filtration is aided by using either positive or negative pressure using vacuum pumps. The older filters made of earthenware or asbestos are called depth filters.

Different types of filters are:
1. Earthenware filters: These filters are made up of diatomaceous earth or porcelain. They are usually baked into the shape of candle. Different types of earthenware filters are:
a. Pasteur-Chamberland filter: These candle filters are from France and are made up of porcelain (sand and kaolin). Similar filter from Britain is Doulton. Chamberland filters are made with various porosities, which are graded as L1, L1a, L2, L3, L5, L7, L9 and L11. Doulton filters are P2, P5 and P11.
b. Berkefeld filter: These are made of Kieselguhr, a fossilized diatomaceous earth found in Germany.
They are available in three grades depending on their porosity (pore size); they are V (veil), N (normal) and W (wenig). Quality of V grade filter is checked using culture suspension of Serrtia marcescens (0.75 μm).
c. Mandler filter: This filter from America is made of kieselguhr, asbestos and plaster of Paris.
2. Asbestos filters: These filters are made from chrysotile type of asbestos, chemically composed of magnesium silicate. They are pressed to form disc, which are to be used only once. The disc is held inside
a metal mount, which is sterilized by autoclaving. They are available in following grades; HP/PYR (for removal of pyrogens), HP/EKS (for absolute sterility) and HP/EK (for claryfying).

3. Sintered glass filters: These are made from finely ground glass that are fused sufficiently to make small
particles adhere to each other. They are usually available in the form of disc fused into a glass funnel.
Filters of Grade 5 have average pore diameter of 1-1.5 μm. They are washed in running water in reverse
direction and cleaned with warm concentrated H2SO4 and sterilized by autoclaving.

4. Membrane filters: These filters are made from a variety of polymeric materials such as cellulose nitrate, cellulose diacetate, polycarbonate and polyester. The older type of membrane, called gradocol (graded colloidion) membrane was composed of cellulose nitrate. Gradocol membranes have average pore diameter of 3-10 μm. The newer ones are composed of cellulose diacetate. These membranes have a pore diameter ranging from 0.015 μm to 12 μm. These filters are sterilized by autoclaving. Membrane filters are made in two ways, the capillary pore membranes have pores produced by radiation while the labyrinthine pore membranes are produced by forced evaporation of solvents from cellulose esters.
The disadvantages of depth filters are migration of filter material into the filtrate, absorption or retention of certain volume of liquid by the filters, pore sizes are not definite and viruses and mycoplasma could pass through. The advantages of membrane filters are known porosity, no retention of fluids, reusable after autoclaving and compatible with many chemicals. However, membrane filters have little loading capacity and are fragile.
Air Filters: Air can be filtered using HEPA (High Efficiency Particle Air) filters. They are usually used in biological safety cabinets. HEPA filters are at least 99.97% efficient for removing particles >0.3 μm in diameter. Examples of areas where HEPA filters are used include rooms housing severely neutropenic patients and those operating rooms designated for orthopedic implant procedures. HEPA filter efficiency is monitored with the dioctylphthalate (DOP) particle test using particles that are 0.3 μm in diameter.

SONIC AND ULTRASONIC VIBRATIONS:

Sound waves of frequency >20,000 cycle/second kills bacteria and some viruses on exposing for one hour. Microwaves are not particularly antimicrobial in themselves, rather the killing effect of microwaves are largely due to the heat that they generate. High frequency sound waves disrupt cells. They are used to clean and disinfect instruments as well as to reduce microbial load. This method is not reliable since many viruses and phages are not affected by these waves.

No comments:

Post a Comment